Select type from wavelength range and number of detection

Model Wavelength Accuracy Number of wavelengths
High accuracy model
Standard 1270 to 1650nm ±0.2ppm 1024 (Multi-wavelength type)
1 (Single-wavelength type)
Extended 1200 to 1700nm
Wide range 900 to 1700nm

High wavelength accuracy of ±0.2 ppm

The High Accuracy AQ6151B model offers an accuracy of ±0.2 ppm to meet the most demanding precision requirements.
The real time correction feature utilizes a highly stable reference signal from the built-in wavelength reference light source in order to provide long-term stability for each and every measurement taken.

CW, modulated transceiver and optical filter measurement

The optical output of optical transceivers and optical transmission systems is modulated with a transmission frequency including 10 G and 25 Gbps. The built-In Optical Spectrum Analysis capability utilizing an FFT technique is required to measure the spectrum broadened by the modulated signal.
In addition to the regular CW light mode, the AQ6151B has a modulated light mode. The modulated mode functions as an optical spectrum analyzer and discovers the center wavelength of the modulated light. This mode can also be used for the center wavelength measurement of optical filters such as a band pass filter, AWG and WSS.

Multi-wavelength type that simultaneously measures up to 1024 wavelengths

The Multi-wavelength type can measure up to 1024 wavelengths in a single input signal with a minimum separation of 5 GHz simultaneously, quickly, and accurately. This means it can meet testing needs in the development and production of WDM transmission system today and in the future as well. The multi-wavelength measurement capability contributes to production efficiency and cost reduction in the production of single-wavelength laser devices as well, by combining multiple laser modules or optical transceivers using an optical coupler and measuring all the signals at once.

Single-wavelength type

Inspection of the wafer and LD chip might be measured only a single wavelength. The single wavelength type is a low-cost optical light wavelength meter suitable for such applications.

Delivering high performance even with low-power input signals

Equipped with an Auto Gain Control (AGC) function, the AQ6151B adjusts the gain of the electrical amplifier automatically based on the input signal power. This helps maximize wavelength accuracy and measurement speed even if the input signal power is as low as −40 dBm.

Improve Productivity

Increase throughput with high speed measurement

For the adjustment and characterization of tunable laser sources and tunable optical transceivers requiring hundreds of wavelength measurements per device, high-speed measurement and processing capability are crucial for improving the production throughput.

The AQ6151B can acquire, analyze and transfer a measurement to a PC in less than 0.2 seconds! This is 2 times faster than our AQ6151 model, thus vastly improving production throughput. In the Repeat measurement mode, the AQ6151B can collect 10 measurements per second, making it extremely useful when adjusting a device while monitoring the wavelength in real time.

Upgrade the test system with ease

Easily build an automated measurement system using a remote control interface, ETHERNET or GP-IB.

The remote command set complies with the commonly accepted SCPI industry standard command set for programmable instruments. Thus, the existing measurement system can be easily upgraded without having to change the measurement program if Yokogawa AQ6140 series or another SCPI compatible optical wavelength meter is already in use.

Reduce lifetime ownership costs

With the conventional wavelength meters, the high failure rate of the wavelength reference light source and its high replacement costs have been a major contribution to the overall costs of ownership during the product life cycle, not to mention the costs generated by the downtime itself.

One of our key targets for product design was to address and mitigate as much as possible these issues. We achieved this goal in a multi-dimensional approach as represented graphically in the below scheme.

  • Extending the typical lifetime (MTBF) of the light source (Maximize Horizontal scale).
  • Reducing the replacement cost (Minimize Vertical scale).

User-friendly interfaces

USB ports

  • For USB compatible data storage devices. mouse, and keyboard.
  • File function enables users to save data and screenshots to the internal memory or USB storage to use when creating test reports. Screenshots can also be saved by simply pressing the Print Screen button (PRT SCN) located on the front panel.

Easy to view bright color LCD

  • The AQ6151B screen design and intuitive interface is inherited from Yokogawa’s best-selling optical spectrum analyzer.
  • This interface has been proven by a vast population of users on a global scale in areas such as R&D testing and troubleshooting in manufacturing.

Data access through LAN

The standard LAN port allows convenient access to files stored in the internal memory as well as the ability to remotely update the firmware from a PC.

Direct operation with mouse

  • Using a USB mouse makes it easy and intuitive to change measurement conditions, execute an analysis, and modify the optical spectrum view.
  • In the optical spectrum view, the waveform view area can be zoomed and shifted by a simple click and drag. The peak threshold line, threshold for peak detection, can also be moved in the same manner.